The connection between the interfacial properties of ionic liquids and their wetting behavior has been studied very little to date and not at all on heterogeneous surfaces. Therefore, we have investigated the static and dynamic wetting for a family of ionic liquids, 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [Rmim][NTf2], on mica, where R represents an ethyl, butyl, or hexyl alkyl chain on the imidazolium ring. Spreading is impacted greatly by a precursor film that forms on both homogeneous and heterogeneous mica surfaces. Macroscopically, the initial viscous spreading of the ionic liquid droplet on bare mica occurs within seconds but is then followed by a very slow relaxation that can be closely correlated with the typical time-scales of the precursor film growth. The contact angle for [emim][NTf2] and [bmim][NTf2] relaxes from about 40° to 23° over 30 and 90 min, respectively. For [hmim][NTf2], the process takes approximately 24 h and approaches complete wetting. The thickness of the precursor films for [emim][NTf2], [bmim][NTf2], and [hmim][NTf2] were 0.53, 0.65, and 1.0 nm, respectively, according to atomic force microscopy (AFM). These values are consistent with a monolayer of ionic liquid cations on mica, rather than ion pairs. A monolayer of octadecylphosphonic acid (OPA) on mica prevents both the formation of a precursor film and the relaxation of the contact angle. However, only a partial surface coverage of ~60% OPA is required to have the same effect. Quenching of precursor film formation (and associated contact angle relaxation) is due to an increasingly connected network of OPA regions that closes the nanoscale paths of bare mica on which the precursor film can develop via surface diffusion.