Identification of immune phenotypes linked to durable graft-versus-leukemia (GVL) response following donor lymphocyte infusions (DLI) is of high clinical relevance. In this prospective observational study of 13 AML relapse patients receiving therapeutic DLI, we longitudinally investigated changes in differentiation stages and exhaustion markers of T cell subsets using cluster analysis of 30-color spectral flow cytometry during 24 months follow-up. DLI cell products and patient samples after DLI were analyzed and correlated to the clinical outcome. Analysis of DLI cell products revealed heterogeneity in the proportions of naïve and antigen experienced T cells. Cell products containing lower levels of effector memory (eff/m) cells and higher amounts of naïve CD4+ and CD8+ T cells were associated with long-term remission. Furthermore, investigation of patient blood samples early after DLI showed that patients relapsing during the study period, had higher levels of CD4+ eff/m T cells and expressed a mosaic of surface molecules implying an exhausted functional state. Of note, this observation preceded the clinical diagnosis of relapse by five months. On the other hand, patients with continuous remission retained lower levels of exhausted CD4+ eff/m T cells more than four months post DLI. Moreover, lower frequencies of exhausted CD8+ eff/m T cells as well as higher amounts of CD4+temra CD45RO+ T cells were present in this group. These results imply the formation of functional long-term memory pool of T cells. Finally, unbiased sample analysis showed that DLI cell products with low levels of eff/m cells both in CD4+ and CD8+ T cell subpopulations associate with a lower relapse incidence. Additionally, competing risk analysis of patient samples taken early after DLI revealed that patients with high amounts of exhausted CD4+ eff/m T cells in their blood exhibited significantly higher rates of relapse. In conclusion, differentially activated T cell clusters, both in the DLI product and in patients post infusion, were associated with AML relapse after DLI. Our study suggests that differences in DLI cell product composition might influence GVL. In-depth monitoring of T cell dynamics post DLI might increase safety and efficacy of this immunotherapy, while further studies are needed to assess the functionality of T cells found in the DLI.