Pearson syndrome (PS), also known as Pearson marrow-pancreas syndrome, is a rare, multisystemic disorder caused by large-scale deletion of mitochondrial DNA (mtDNA) ranging from 2.3 kb to 9 kb, with 4,977 bp in length as the most common variant. This paper reported a novel mtDNA deletion of 4,734 bp in size, spanning from nucleotide 11,220 to 15,953. The infant suffered from chronic hepatomegaly, liver dysfunction, anemia and lactic acidosis over 1 year. Evidences of any infections were negative. Bone marrow aspiration and whole exome sequencing covering nearly 20,000 nucleus genes were performed when aged 3.3 and 6 months, respectively, but no genetic cause was identified. However, at his age 13 months, multiplex ligation-dependent probe amplification assay of the mtDNA in the patient detected a large deletion of 4,734 bp in size spanning the mitochondrial genes MTND4, MTTH, MTTS2, MTTL2, MTND5, MTND6, MTTE, MTCYB and MTTT which were functionally crucial for the intact oxidative phosphorylation pathway and adenosine triphosphate production, and PS was thus definitely diagnosed. This large deletion was negative in his parents and elder brother. Oral ursodeoxycholic acid, fat-soluble vitamins and blood transfusions were administrated, his clinical and laboratory presentations remained stable so far, but the long-term prognosis needed to be followed up. These findings enriched the variant spectrum of mtDNA, and demonstrated the importance of considering mitochondrial disorder in patient with intractable anemia, liver dysfunction and lactic acidosis as well as the significance of appropriate choosing of relevant genetic tools in the etiology diagnosis of such patients.