Polysaccharide-based natural polymer electrolyte membranes have had tremendous consideration for the various energy storage operations including wearable electronic and hybrid vehicle industries, due to their unique and predominant qualities. Furthermore, they have fascinating oxygen functionality results of a higher flexible nature and help to form easier coordination of metal ions thus improving the conducting profiles of polymer electrolytes. Mixed operations of the various alkali and alkaline metal–salt-incorporated biopolymer electrolytes based on different polysaccharide materials and their charge transportation mechanisms are detailly explained in the review. Furthermore, recent developments in polysaccharide electrolyte separators and their important electrochemical findings are discussed and highlighted. Notably, the characteristics and ion-conducting mechanisms of different biopolymer electrolytes are reviewed in depth here. Finally, the overall conclusion and mandatory conditions that are required to implement biopolymer electrolytes as a potential candidate for the next generation of clean/green flexible bio-energy devices with enhanced safety; several future perspectives are also discussed and suggested.