Two-dimensional materials composed of elements from the 15th group of the periodic table remain largely unexplored. The primary challenge in advancing this research is the lack of largescale layers that would facilitate extensive studies using laterally averaging techniques and enable functionalization for the fabrication of novel electronic, optoelectronic, and spintronic devices. In this report, we present a method for synthesizing large-scale antimonene layers, on the order of cm 2 . By employing molecular beam epitaxy, we successfully grow a monolayer film of α-phase antimonene on a W(110) surface passivated with a single-atom-thick layer of Sb atoms. The formation of α phase antimonene is confirmed through scanning tunneling microscopy and low-energy electron diffraction measurements. The isolated nature of the α-phase is further evidenced in the electronic structure, with linearly dispersed bands observed through angle-resolved photoelectron spectroscopy and supported by ab initio calculations.