Current aspects of the developing of modern self-shielding flux-cored wires composition for arc welding of low-alloyed steels are considered. Advantages and disadvantages of flux-cored wires of carbonate-fluorite, oxide and oxide-fluoride types of are shown in comparison. The effectiveness of gas shielding of molten metal at welding with self-shielding flux-cored wires of carbonate-fluorite type is analyzed considering the thermal properties of their cores. It is shown that to improve reliability of gas shielding at welding using the wires of this type it is important not only to ensure generation of sufficiently large volume of shielding gases at thermal destruction of the wire core, but also to control this process, providing gas evolution at all stages of heating and melting of the wire. The results of complex thermal analysis of the wire core mixtures containing, for example, lithium carbonate show substantially large heat losses for heating and melting of the wire core, which are accompanied by the development of energy-intensive processes of thermal destruction of core components. It is shown that the limitation of lithium carbonate content in the wire at the level of not more than 2 wt. % allows not only to preserve welding arc burning stability at the acceptable level but also to provide effective gas shielding of molten metal and easy separation of slag crust. The control of thermochemical reactions in the core is achieved by selection of its proper composition to ensure favorable melting of flux-cored wire and electrode metal transfer to the welding pool. Results of metallographic examinations of distribution and composition of non-metallic inclusions in metal of the welds made with wires of the oxide and oxide-fluoride types are presented. Main properties of the developed self-shielding flux-cored wires and recommendations on welding are given in conjunction with prospective fields of their application.