Rationale
Cardiac progenitor cells are an attractive cell type for tissue regeneration but their mechanism for myocardial remodeling is still unclear.
Objective
This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), as well as their potential to recover injured myocardium.
Methods and Results
Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients more than 40 years or less than one month of age, respectively, and their functional potential was determined in a rodent myocardial infarction (MI) model. A more robust in vitro proliferative capacity of nCPCs, compared to aCPCs, correlated with significantly greater myocardial recovery mediated by nCPCs in vivo. Strikingly, a single injection of nCPC-derived total conditioned media (nTCM) was significantly more effective than nCPCs, aCPC-derived TCM (aTCM), or nCPC-derived exosomes in recovering cardiac function, stimulating neovascularization, and promoting myocardial remodeling. High resolution accurate mass spectrometry (HRAMS) with reverse phase liquid chromatography fractionation and mass spectrometry (LC-MS/MS) was employed to identify proteins in the secretome of aCPCs and nCPCs, and literature-based networking software identified specific pathways affected by the secretome of CPCs in the setting of MI. Examining the TCM, we quantified changes in the expression pattern of 804 proteins in nTCM and 513 proteins in aTCM. Literature-based proteomic network analysis identified that 46 and 6 canonical signaling pathways were significantly targeted by nTCM and aTCM, respectively. One leading candidate pathway is heat shock factor-1 (HSF-1), potentially affecting 8 identified pathways for nTCM but none for aTCM. To validate this prediction, we demonstrated that modulation of HSF-1 by knockdown in nCPCs or overexpression in aCPCs significantly altered the quality of their secretome.
Conclusions
In conclusion, a deep proteomic analysis revealed both detailed and global mechanisms underlying the chronological age-based differences in the ability of CPCs to promote myocardial recovery via the components of their secretome.