Abstract. Glioblastoma multiforme (GBM) is the most common and lethal malignant primary brain tumor. It is classified by the World Health Organization (WHO) in the group of diffusely infiltrating astrocytomas, representing up to 50% of all primary brain gliomas, and carries the poorest prognosis. Aberrant genetic events and signaling pathways have clearly demonstrated that GBM is highly anaplastic and a morphologically highly heterogeneous tumor. Understanding the genetic alterations, specific molecular biomarkers and proliferative pathways may promote therapeutic development for the management of GBM. Age, Karnofsky performance score, histology, position and the extent of tumor resection have been identified as potential prognostic factors for patients with GBM. In this study, we review the molecular characterization of tumor cells, the current standard of care for patients diagnosed with GBM, including gross or near-total resection of the tumor, followed by radiotherapy, stereotactic brachytherapy, chemotherapy and new targeted therapies. Thus, we conclude that multimodal approaches for the treatment of patients with GBM may significantly improve their prognoses.
IntroductionGlioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor in humans, representing up to 50% of all primary brain gliomas, and the prognosis of patients with GBM remains poor (1,2). A grading scheme that has been proposed by the World Health Organization (WHO) distinguishes four different grades of gliomas. One of these, GBM WHO IV with predominant astrocytic differentiation, accounts for approximately 12-15% of all brain tumors and 60-75% of astrocytic tumors, and is the most malignant type (3). Approximately 51,000 primary brain tumors are diagnosed in the United States each year, 36% of which are gliomas. Half of these are GBM, with approximately 3 in 100,000 individuals newly diagnosed with GBM each year (4). The treatment difficulty is due to the exceptionally infiltrative nature of GBM and its proclivity to integrate into normal brain tissue (5). Fortunately, it is worth noting that, with the notable recent advances in therapy, an increasing number of GBM patients are surviving for 36 months or longer, so that they are referred to as long-term survivors (LTS, ≥36 months) (6). To date, the management of patients with GBM continues to harbor significant challenges, and comprehensive genetic screens of tumor tissues and signaling pathways have been explored to develop molecular-based targeted therapies (7).
Molecular characterizationAlthough numerous genetic alterations have been described in GBM (8,9), such markers have proven to be of marginal utility in predicting outcome or guiding decisions regarding disease management. In general, the molecular characterization of GBM should provide a better understanding of the genomic landscape of GBMs and more efficacious means for rapid, high-throughput analyses of tumor cells and tissues.Despite common clinical presentations and histology, it has been clearly demon...