Background: Biochemical analytes provide information for neonatal disease management and therapy, and population-based reference intervals (RIs) are essential to accurately interpret laboratory test results. This study aimed to establish local RIs for biochemical assays in term neonates.Methods: A total of 195 healthy term neonates from birth to 3rd day were recruited as reference individuals prospectively. Analytes of 26 common biochemistries were measured using the VITROS 5600 Integrated System. The 3-level nested ANOVA was performed to assess the need for partitioning RIs of each analytes, and RIs were derived by a nonparametric method or robust method. Multiple regression analysis was used to evaluate specific correlations between the analytes and individual characteristics including age, gender, gestational age, birthweight and delivery mode.Results: There were no between-sex differences in all analytes, whereas there were significant between-day-age differences in 6 analytes. Small between-delivery-mode differences were observed in the results for potassium, phosphate, and urea. The major related factor of most analytes was postnatal age. During the first 3 days, values of iron, lipids and lipoproteins increased; creatinine, urea, uric acid, creatine kinase and lactate dehydrogenase decreased; other analytes showed slight changes or relatively stable trends. Reference limits of some analytes, particularly lactate dehydrogenase and alkaline phosphatase, were significant different from adult and pediatric groups.Conclusions: RIs of 26 common biochemical analytes are established for term neonates aged 0 to 3 days in northeast China. Additionally, it is suggested that age-related changes should be valued in the clinical decision-making process for newborns.