Purpose Sb is a metalloid that naturally occurs in traces in the Northern German Lowland Area, only. Its frequent and still growing demand for industrial purposes and its release during coal combustion and by vehicular emissions lead to an enrichment of Sb in topsoils. Numerous analyses on heavy metals have been conducted in the urban environment so far, but although Sb can be ecologically harmful and potentially carcinogenic, only few studies on Sb in soils were carried out. Materials and methods Due to the formation of anthropogenic soils by men, especially in the course of industrialization and after World War II, more than 50% of the Berlin soils consist of anthropogenic material like redeposited natural material, debris, waste, or ashes. This composition of soils of the Berlin Metropolitan Area can function as a model for other metropolitan regions of Central Europe. In the urban and peri-urban area of Berlin, analysis of more than 900 topsoil samples has been performed measuring the content of 12 heavy metals and metalloids (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, and Zn). As a reference for the natural environment, soil profiles of typical parent rock material have been investigated taking also the regional (0.3 mg/kg), the local background value (0.61 mg/kg), and the baseline value (0.07 mg/kg) for Sb into account. Results By doing so, we could show the spatial distributional pattern of Sb in the Berlin Metropolitan Area and statistically evaluate our results in dependency of land-use, parent material, and soil parameters such as organic carbon content and pH. Thereby, we could prove an average enrichment two to six times over the regional background value. Median Sb content is very low in forest topsoils (0.54 mg/kg) and reaches its maximum in roadside soils (1.75 mg/kg). Technogenic materials, vehicular emissions, industrial processes, and (former) land-use are the predominant factors for Sb enrichment and distribution in the study area. Some single samples show an enrichment of up to 600% of the regional background value for topsoils. Conclusion Our study revealed that the Sb content in the Berlin Metropolitan Area is elevated compared to natural environments. Furthermore, we could demonstrate that Sb is a previously neglected key pollutant, specific to metropolitan areas. Due to the high environmental relevance, further Sb data from selected investigated spaces in other metropolises and specific land-use types are needed to assess the potential environmental risk of Sb in metropolitan areas.Keywords Trace metals . Urban geochemistry . Pollution index . Technogenic soils . Antimony (Sb) . Urban structure type 1 Introduction
Antimony-general properties and natural occurrence in Central EuropeAntimony (Sb) is a metalloid trace element of the 15 IUPAC group that is, depending on the environment, occurring in a tri-(Sb(III)) or pentavalent (Sb(V)) state (Filella et al. 2002(Filella et al. , 2009Wilson et al. 2010). Sb has two stable isotopes that are distributed with 57.21% ( 121 Sb) and 42.79% ( 123 S...