(English) Climate change is pushing to decarbonize worldwide economies and forcing fossil fuel-based power systems to evolve into power systems based mainly on renewable energies sources (RES). Thus, increasing the energy generated from
renewables in the energy supply mix involves transversal challenges at operational, market, political and social levels due to the stochasticity associated with these technologies and their capacity to generate energy at a small scale close to the consumption point. In this regard, the power generation uncertainty can be handled through battery storage systems (BSS) that have become competitive over the last few years due to a significant price reduction and are a potential alternative to mitigate the technical network problems associated with the intermittency of the renewables, providing flexibility to store/supply energy when is required. On the other hand, the capacity of low-cost generation from small-scale power systems (distributed or decentralized generation (DG)) represents an opportunity for both customers and the power system operators. i.e., customers can generate their energy, reduce their network dependency, and participate actively in eventual local energy markets (LEM), while the power system operator can reduce the system losses and increase the power system quality against unexpected external failures. Nevertheless, incorporating these structures and operational frameworks into distribution networks (DN) requires developing sophisticated tools to support decision-making related to the optimal integration of the distributed energy resources (DER) and assessing the performance of new DNs with high DERs penetration under different operational scenarios.
This thesis addresses the distribution networks' decarbonization challenge by developing novel algorithms and applying different optimization techniques through three subtopics. The first axis addresses the optimal sizing and allocation of DG
and BSS into a DN from deterministic and stochastic approaches, considering the technical network limitation, the electric vehicle (EV) presence, the users capacity to modify their load consumption, and the DG capability to generate reactive power for voltage stability. Besides, a novel algorithm is developed to solve the deterministic and stochastic models for multiple
scenarios providing an accurate DERs capacity that should be installed to decrease the external network dependency. The second subtopic assesses the DN capacity to face unlikely scenarios like primary grid failure or natural disasters preventing the energy supply through a deterministic model that modifies the unbalance DN topology into multiple virtual microgrids (VM)
balanced, considering the power supplied by DG and the flexibility provided by the storage devices (SD) and demand response (DR). The third axis addresses the emerging transactive energy (TE) schemes in DNs with high DERs penetration
at a residential level through two stochastic approaches to model a Peer-to-peer (P2P) energy trading. To this end, the capability of a P2P energy trading scheme to operate on different markets as day-ahead, intraday, flexibility, and ancillary
services (AS) market is assessed, while an algorithm is developed to manage the users' information under a decentralized design.
(Català) El cambio climático está obligando a descarbonizar las economías de todo el mundo forzando a los sistemas de energía basados en combustibles fósiles a evolucionar hacia sistemas de energía basados principalmente en fuentes de energía renovables (FER). Así, incrementar la energía generada a partir de renovables en el mix energético está implicando retos transversales a nivel operativo, de mercado, político y social debido a la estocasticidad asociada a estas tecnologías y su capacidad de generar electricidad a pequeña escala cerca al punto de consumo. En este sentido, la incertidumbre en la generación de energía eléctrica puede ser manejada a través de sistemas de almacenamiento en baterías (BSS) que se han vuelto competitivos en los últimos años debido a una importante reducción de precios y son una potencial alternativa para mitigar los problemas técnicos de red asociados a la intermitencia de las renovables, proporcionando flexibilidad para almacenar/suministrar energía cuando sea necesario. Por otro lado, la capacidad de generación a bajo costo a partir de sistemas eléctricos de pequeña escala (generación distribuida o descentralizada (GD)) representa una oportunidad tanto para los clientes como para los operadores del sistema eléctrico. Es decir, los clientes pueden generar su energía, reducir su dependencia de la red y participar activamente en eventuales mercados locales de energía (MLE), mientras que el operador del sistema eléctrico puede reducir las pérdidas del sistema y aumentar la calidad del sistema eléctrico frente a fallas externas inesperadas. Sin embargo, incorporar estas estructuras y marcos operativos en las redes de distribución (RD) requiere desarrollar herramientas sofisticadas para apoyar la toma de decisiones relacionadas con la integración óptima de los recursos energéticos distribuidos (RED) y evaluar el desempeño de las nuevas RD con alta penetración de RED bajo diferentes escenarios de operación. Esta tesis aborda el desafío de la descarbonización de las redes de distribución mediante el desarrollo de algoritmos novedosos y la aplicación de diferentes técnicas de optimización a través de tres dimensiones. El primer eje aborda el dimensionamiento y localización óptimos de GD y BSS en una RD desde enfoques determinísticos y estocásticos, considerando la limitación técnica de la red, la presencia de vehículos eléctricos (VE), la capacidad de los usuarios para modificar su consumo de carga y la capacidad de GD para generar potencia reactiva para la estabilidad del voltaje. Además, se desarrolla un algoritmo novedoso para resolver los modelos determinísticos y estocásticos para múltiples escenarios proporcionando una capacidad precisa de RED que debe instalarse para disminuir la dependencia de la red externa. El segundo subtema evalúa la capacidad de la RD para enfrentar escenarios improbables como fallas en la red primaria o desastres naturales que impidan el suministro de energía, a través de un modelo determinista que modifica la topología de la RD desequilibrada en múltiples microrredes virtuales (MV) balanceadas, considerando la potencia suministrada por GD y la flexibilidad proporcionada por los dispositivos de almacenamiento y respuesta a la demanda (DR). El tercer eje aborda los esquemas emergentes de energía transactiva en RDs con alta penetración de RED a nivel residencial a través de dos enfoques estocásticos para modelar un comercio de energía Peer-to-peer (P2P). Para ello, se evalúa la capacidad de un esquema de comercialización de energía P2P para operar en diferentes mercados como el mercado diario, intradiario, de flexibilidad y de servicios complementarios, a la vez que se desarrolla un algoritmo para gestionar la información de los usuarios bajo un esquema descentralizado.