Currently, there are more than 35 US FDA-approved NPs utilizing PEG in their biomedical applications. PEGylation, which is the addition of PEG to the NP formulation, provides immunity from the hostile biological environment. The 'stealth' property, further confers on the PEG-NP formulation benefits that are not normally provided by other polymers. This mini-review briefly describes the mechanisms of action, as well as the benefits and challenges of PEG and PEGylation in cancer therapy.
General Mechanisms of PEG-Mediated NP ActionUpon administration, NPs are recognized and cleared from circulation by the phagocytes from the reticuloendothelial system (RES). The circulation time of the NPs is largely determined by their surface structure and their hydrophilicity/ hydrophobicity state that governs the amounts of opsonins absorbed. The process of opsonization (opsonin-NP binding) reduces the circulation time of the NPs. Reports indicate that the PEG polymer on the NP surface increases the circulation time by reducing this opsonization process, thereby preventing recognition by monocytes and macrophages, allowing the NPs to remain longer in the blood pool [1]. In addition to NP-RES interactions, poor circulation times can also arise from NP-NP interactions, where NPs with a high surface energy have a greater tendency to aggregate as described by the DerjaguinLandau-Verwey-Overbeek (DLVO) theory [2].PEGylation of small proteins, peptides, and oligonucleotides, has also become an increasingly common method of improving the half-life of biological products, mainly through reducing the urinary excretion of the molecule [3].Many other successful experimental assays depend on the ability to re-engineer the solubility, size, and other properties of drugs, peptides or proteins, in their interactions with PEG in an effort to increase the resident time in circulation. PEGylation, if empirically researched on, would become a very useful method of making these modifications.
Benefits and Challenges of NP Applications of PEGThe maor benefits from the use of PEG in NP formulations derives from its "stealth' properties, as well as the increase in circulation times for the NP conjugates. Clearly, the addition of PEG to the NP formulation increases the retention and circulation time by reducing uptake by opsonins in the RES. It was reported previously that particles remained in rat circulation 40-times longer when coated than uncoated with PEG [4]. Additionally, incorporation of dioleoyl N-(monomethoxy polyethylene glycol succinyl) phosphotidylethanolamine (PEG-PE) into posphatidylcholine:cholesterol liposomes (1:1) increased the retention time from thirty minutes to five [5]. By virtue of the fact that PEG is hydrophilic, the serum and other solvent solubility also increases, further enhancing the circulation time. These merits also result in higher targeted and accumulated PEGylated NPs than non-PEGylated counterparts.