Omental adipose stromal cells (O-ASC) are a multipotent population of mesenchymal stem cells contained in the omentum tissue that promote endometrial and ovarian tumor proliferation, migration, and drug resistance. The mechanistic underpinnings of O-ASCs' role in tumor progression and growth are unclear. Here, we propose a novel nitric oxide (NO)-mediated metabolic coupling between O-ASCs and gynecologic cancer cells in which O-ASCs support NO homeostasis in malignant cells. NO is synthesized endogenously by the conversion of L-arginine into citrulline through nitric oxide synthase (NOS). Through arginine depletion in the media using L-arginase and NOS inhibition in cancer cells using N G -nitro-L-arginine methyl ester (L-NAME), we demonstrate that patientderived O-ASCs increase NO levels in ovarian and endometrial cancer cells and promote proliferation in these cells. O-ASCs and cancer cell cocultures revealed that cancer cells use O-ASCsecreted arginine and in turn secrete citrulline in the microenvironment. Interestingly, citrulline increased adipogenesis potential of the O-ASCs. Furthermore, we found that O-ASCs increased NO synthesis in cancer cells, leading to decrease in mitochondrial respiration in these cells. Our findings suggest that O-ASCs upregulate glycolysis and reduce oxidative stress in cancer cells by increasing NO levels through paracrine metabolite secretion. Significantly, we found that O-ASCmediated chemoresistance in cancer cells can be deregulated by altering NO homeostasis. A combined approach of targeting secreted arginine through L-arginase, along with targeting microenvironment-secreted factors using L-NAME, may be a viable therapeutic approach for targeting ovarian and endometrial cancers. Cancer Res; 75(2); 456-71. Ó2014 AACR.