Objective: In the domain of nano drug delivery, dendrimers are the most explored bioactive polymeric carrier system. The present work was aimed to study the diffusion potential of different generations of Poly (propyleneimine) (PPI) dendrimers on goat nasal mucosa in an ex vivo study and synthesize a stable dendrimer for olfactory drug delivery.Methods: The generations (3.0G, 4.0G, and 5.0G) of PPI dendrimer were synthesized, and PEGylated by MPEG 5000 and then loaded with donepezil. A comparative study was carried out among all generations in term of their drug loading capacity, stability, sustained release behaviour as well as for targeting efficacy. An ex-vivo study was carried out on Franz Diffusion Cell with goat nasal mucosa.Results: The developed G3, G4, and G5 dendrimerformulations had entrapment efficiency of 24.33±0.56%, 40.12±0.62%, and 60.4±0.6%, respectively. The nasal diffusion study revealed that 5.0G PPI dendrimer increased diffusion of donepezil up to 47% as compared to the pure solution of donepezil while 10% improvement in diffusion was seen as compared to 4.0 G PPI dendrimer. Thus obtained results claimed that the drug loading as well as targeting potential of PPI dendrimers increased with the increase in the number of generation. The investigation outcome indicated promising results of 5.0G PPI dendrimer over the 3.0G and 4.0G PPI dendrimer generations for their drug loading capacity, stability, and sustained release action.Conclusion: The 5.0G PPI dendrimer proved its superior candidature over the other lower generations of PPI dendrimers for drug delivery and drug targeting.