2017 Brazilian Conference on Intelligent Systems (BRACIS) 2017
DOI: 10.1109/bracis.2017.45
|View full text |Cite
|
Sign up to set email alerts
|

PELESent: Cross-Domain Polarity Classification Using Distant Supervision

Abstract: The enormous amount of texts published daily by Internet users has fostered the development of methods to analyze this content in several natural language processing areas, such as sentiment analysis. The main goal of this task is to classify the polarity of a message. Even though many approaches have been proposed for sentiment analysis, some of the most successful ones rely on the availability of large annotated corpus, which is an expensive and time-consuming process. In recent years, distant supervision ha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 20 publications
(44 reference statements)
0
1
0
1
Order By: Relevance
“…Portuguese is the lack of standard annotated datasets. For the accomplishment of the present work we have considered some of the few recent corpus of tweets in Brazilian Portuguese cited in the literature, including the PELESent [3], Tweet-SentBR [4] and BRTweetSentCorpus [5].…”
Section: Datasets For Brazilian Portuguese Sentiment Analysismentioning
confidence: 99%
“…Portuguese is the lack of standard annotated datasets. For the accomplishment of the present work we have considered some of the few recent corpus of tweets in Brazilian Portuguese cited in the literature, including the PELESent [3], Tweet-SentBR [4] and BRTweetSentCorpus [5].…”
Section: Datasets For Brazilian Portuguese Sentiment Analysismentioning
confidence: 99%
“…Mais detalhes sobre seu funcionamento podem ser encontrados na Subseção 3.2.3. Esse tipo de arquitetura já foi utilizado com sucesso para segmentação de sentenças (TILK; ALUMÄE, 2016;CHE et al, 2016) e também para classificação de textos em geral (LAI et al, 2015), inclusive em trabalhos para o português brasileiro, como em (TREVISO; SHULBY; ALUÍSIO, 2017;CORREA et al, 2017). A arquitetura da RCNN utilizada, baseada no trabalho de Treviso, Shulby e Aluísio (2017) utilizado, sendo que o processo de indução das word embeddings usadas é descrito detalhadamente na Seção 6.3.…”
Section: Identificação De Ruídos Baseada Em Aprendizado De Máquinaunclassified
“…Distant supervision or weak supervision increases the data size (unlabeled text) by (semi-) automatically assigning labels from an external source or using some heuristics. For example , Corrêa Jr et al (2017) applied distant supervision for increasing data size in a twitter-based sentiment analysis corpus. The authors used emojis like ":)" and ":(" for annotating tweets as positive or negative, respectively.…”
Section: Additional Labeled Data Generationmentioning
confidence: 99%