There are an increasing number of microlithography applications such as advanced packaging, nanotechnology and thin film head production that require the use of thick photoresist materials. The exposure dose requirements for these applications dramatically increase as the photoresist thickness increases. For example, some positive acting novolak photoresists require exposures in excess of 5000 mJoules/cm 2 for 100 µm thick films. When a single reticle is used to pattern many wafers, a significant amount of light and heat energy is transferred from the lithography tool illumination source to the pellicle protecting the reticle image. In high volume production environments, a pellicle can be subjected to accumulated dosages exceeding 500 kJoules/cm 2 within a matter of weeks.Because thick photoresist applications benefit from using 1X broadband steppers with high wafer plane irradiance, life-testing results were reviewed for broadband pellicles designed for maximum transmission at g, h and i-line wavelengths of Hg. Historically, pellicle lifetime testing was typically carried out only to approximately 500 kJoules/cm 2 . While this test limit may have been sufficient for thin photoresist applications used in semiconductor applications, longer lifetime studies are required to determine pellicle durability for thick photoresist applications.In this study, life testing was performed on multiple pellicle films designed for broadband illumination, including nitrocellulose, cellulose acetate, cellulose ester and fluoropolymer films. Spectroscopic transmission at g, h and i-line was first measured on unexposed pellicles. The pellicles were attached to test reticles and exposed to high-energy doses on an Ultratech broadband stepper, accumulating up to 3000 kJoules/cm 2 . Transmission was periodically re-measured and the pellicle films were visually inspected for color change and any apparent physical damage. Results were compared to the expected optical properties for each film type, and recommendations are provided for the most appropriate film type for high-energy applications. Of the six pellicles tested, the two fluoropolymer films showed substantially better transmission stability than the cellulose based films. Discoloration occurred on the cellulose films over the chrome to glass transition area of the test reticle field suggesting that heat in the chrome surface affects the chemical structure of the pellicle films, thereby changing their transmission properties.
,1752'8&7,21Recently there has been a rapid acceleration in the pace of conversion from conventional ceramic and plastic based integrated circuit (IC) packaging to advanced wafer level chip scale packaging, primarily using solder and gold bump technology. Initially driven by the need for smaller form factors for cellular telephones and other