Background
Endometriosis is a chronic inflammatory disease associated with the growth and proliferation of endometrial‐like tissues outside the uterus. Although the exact etiology and mechanism of the pathogenesis of the disease have not been fully elucidated, the immune system cells and the mediators produced by them can be named as effective factors in the onset and progression of the disease.
Aims
We aim to attempt to review studies on the role of the immune system in endometriosis to better understand the pathogenesis of endometriosis.
Content
Abundant production of inflammatory mediators by neutrophils and macrophages and reduced cytotoxicity of defined cells promote endometriosis at the early stages of the disease. Following an increase in the inflammation of the environment, the body takes compensatory mechanisms to reduce inflammation and establish homeostasis. For this purpose, the body produces remodeling and anti‐inflammatory factors leading to slow conversion of the inflammatory environment into a non‐inflammatory environment with proliferative and immunosuppressive properties. Environmental conditions induce M2 macrophages, TH2 cells, and Tregs differentiation, promoting disease progression by producing angiogenic and immunosuppressive factors. However, the exact molecular mechanism involved in changing inflammatory to non‐inflammatory conditions is not yet fully understood.
Implications
Due to the common characteristics of endometriotic cells and cancer cells, most potential treatment options for endometriosis have been suggested due to the results of these methods in the treatment of cancer. In this pathway, immune system cells and soluble mediators can be used as targets.