2020
DOI: 10.33365/jtk.v14i1.531
|View full text |Cite
|
Sign up to set email alerts
|

Penentuan Rekomendasi Pelatihan Pengembangan Diri Bagi Pegawai Negeri Sipil Menggunakan Algoritma C4.5 Dengan Principal Component Analysis Dan Diskritisasi

Abstract: Setiap institusi memiliki kebutuhan untuk terus meningkatkan pelayanan dan melakukan inovasi yang perlu mendapatkan dukungan dari SDM yang berkualitas. Pelatihan menjadi salah satu cara untuk mewujudkan SDM yang berkualitas. Namun terkadang penentuan pelatihan yang sesuai untuk seorang pegawai tidak mudah dan berpeluang menimbulkan ketidakkonsistenan. Masalah tersebut dapat diatasi dengan melakukan data mining terhadap data pemetaan pegawai sehingga didapatkan aturan untuk penentuan rekomendasi pelatihan penge… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 7 publications
0
3
0
2
Order By: Relevance
“…Normalization is performed to change the data value into a data range between 0 to 1 [16]. d. Data discretization Data discretization is used to change continuous features into discrete ones [17]. Discretization used in this study is a type of equal frequency, which divides data or determines intervals based on the same frequency.…”
Section: B Change Class Labelmentioning
confidence: 99%
“…Normalization is performed to change the data value into a data range between 0 to 1 [16]. d. Data discretization Data discretization is used to change continuous features into discrete ones [17]. Discretization used in this study is a type of equal frequency, which divides data or determines intervals based on the same frequency.…”
Section: B Change Class Labelmentioning
confidence: 99%
“…Principal Component Analysis (PCA) adalah salah satu metode yang populer digunakan untuk mereduksi dimensi citra (Vidal et al, 2018) (Rahmawan, 2020) (Andrian, 2019) dari ruang citra sehingga basis baru dapat menggambarkan model yang khas/unik dari citra tersebut (Yuliana & Nurhaida, 2018). PCA diciptakan pada 1901 oleh Karl Pearson (Vidal et al, 2018)…”
Section: Pca (Principal Component Analysis)unclassified
“…Prosedur kunci dalam PCA didasarkan pada tranformasi Karhumen-Loeve. Principal Component Analysis diaplikasikan pada variabel prediksi saja dengan mengabaikan variabel target (Rahmawan, 2020). Principal Component Analysis sering digunakan dalam mereduksi data.…”
Section: Pca (Principal Component Analysis)unclassified
“…Additionally, the algorithm is used to aid students in selecting elective courses [8] and optimize product placement on shelves based on customer search frequency levels [9]. While [10] compared three methods for determining selfdevelopment training, namely the C4.5 algorithm, the combination of PCA and C4.5, and the combination of C4.5, discretization, and PCA. The test results show that the combination of PCA, discretization, and C4.5 gives better performance than the other two methods with an average accuracy rate of 86.6%.…”
Section: Introductionmentioning
confidence: 99%
“…After reviewing the literature, it is evident that association techniques are used in several fields, ranging from recommending sales strategies [2], [6], [9], [11], book recommendations [3], [4], study plan recommendations [5], [8], and even violence prevention recommendations [7]. However, research on training recommendations using data mining is very limited [10]. Therefore, the researcher opted to use association data mining techniques with the Apriori method to design training recommendations.…”
Section: Introductionmentioning
confidence: 99%