Hair diseases are common and can be caused by a variety of factors, including genetics, stress, nutritional deficiencies, as well as exposure to sunlight and air pollution. Accurate diagnosis of hair diseases is important for proper treatment, but can be challenging due to overlapping symptoms. The development of the healthcare world has widely utilized machine learning and deep learning approaches to assist in the healthcare field. This research aims to develop hair disease classification using Convolutional neural network (CNN). The CNN-based approach is expected to help health professionals diagnose hair diseases accurately and provide targeted treatment. This research involves an experimental design with three main stages: identifying the research problem, conducting a literature review, and collecting data. The research uses a dataset of hair disease images obtained from Kaggle, which are annotated and organized based on different hair disease types. After the image data is collected, the image dataset will go through the image preprocessing stage. Experiments were conducted using hair disease image data with 15 epochs on a CNN Deep Learning model with VGG-16 architecture, and resulted in an accuracy of 94.5% and a loss rate of 18.47%, with a testing epoch time of 9 hours 48 minutes. The results of this study show that CNN with VGG-16 architecture can successfully classify 10 types of hair diseases