2021
DOI: 10.30598/barekengvol15iss3pp555-564
|View full text |Cite
|
Sign up to set email alerts
|

Penerapan Metode Autoregressive Integrated Moving Average (Arima) Untuk Prediksi Bilangan Sunspot

Abstract: Peristiwa magnetik pada matahari ditandai dengan salah satu tanda yaitu munculnya sunspot atau bintik matahari. Sunspot terletak di fotosfer matahari yang memiliki warna lebih gelap dari pancaran sekitarnya. Tujuan dari penelitian ini adalah untuk memprediksi bilangan sunspot dengan menggunakan metode ARIMA. Metode ARIMA dilakukan dengan melihat plot ACF dan PACF untuk mendapatkan model yang akan digunakan dalam prediksi. Penelitian ini menggunakan data bilangan sunspot yang dimulai dari bulan Januari tahun 19… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 9 publications
0
1
0
Order By: Relevance
“…In the ARIMA model, there are Autoregressive (AR) and Moving Average (MA) components so that a model used for variable projection can be an Autoregressive (p) model, a Moving Average (q) model, or a combination model of the two (ARMA(p,q)) (Ohyver & Pudjihastuti, 2018). Autoregressive is a model that uses the assumption that the data in the previous period is very influential on the current data so that it can be formulated as follows (Yuliawanti et al, 2021) :…”
Section: Methodsmentioning
confidence: 99%
“…In the ARIMA model, there are Autoregressive (AR) and Moving Average (MA) components so that a model used for variable projection can be an Autoregressive (p) model, a Moving Average (q) model, or a combination model of the two (ARMA(p,q)) (Ohyver & Pudjihastuti, 2018). Autoregressive is a model that uses the assumption that the data in the previous period is very influential on the current data so that it can be formulated as follows (Yuliawanti et al, 2021) :…”
Section: Methodsmentioning
confidence: 99%