2018
DOI: 10.20527/klik.v5i2.157
|View full text |Cite
|
Sign up to set email alerts
|

Penerapan Metode K-Means Untuk Pemetaan Calon Penerima Jamkesda

Abstract: <p><em>Kelurahan Kemuning, one of the Social Welfare Section, there is poor community service to receive Regional Health Insurance. During this section of Social Welfare Section in Kelurahan Kemuning, there is no method that can classify the level of poverty so that the beneficiaries on target, so the Kelurahan can't prevent the inaccuracies. Therefore, poverty grouping can assist Kelurahan in making the right decision to prevent the inaccuracies of recipients of Regional Health Insurance. In this … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
9

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(11 citation statements)
references
References 0 publications
0
2
0
9
Order By: Relevance
“…From the results of the calculation of the Davies Bouldin Index, the value of determining the number of clusters is 2 clusters (0.243), 3 clusters (0.256), 4 clusters (0.275). The value used is 2 clusters because the value is close to 0 (Waworuntu & Amin, 2018) Research by Dina Sunia, Kurniabudi Kurniabudi, and Pareza Alam Jusia entitled the application of data mining for clustering data for the indigent using the k-means algorithm, data source from the BPS of the city of Jambi In March 2017 the number of indigent people was 286.55 thousand people (8.19%) Based on these figures, it can be seen that the poverty rate in Jambi City, in general, is still high. Based on these conditions, it is necessary to do clusters to help the Jambi City Social Service in grouping indigent families so that assistance can be distributed appropriately.…”
Section: Literature Reviewmentioning
confidence: 99%
“…From the results of the calculation of the Davies Bouldin Index, the value of determining the number of clusters is 2 clusters (0.243), 3 clusters (0.256), 4 clusters (0.275). The value used is 2 clusters because the value is close to 0 (Waworuntu & Amin, 2018) Research by Dina Sunia, Kurniabudi Kurniabudi, and Pareza Alam Jusia entitled the application of data mining for clustering data for the indigent using the k-means algorithm, data source from the BPS of the city of Jambi In March 2017 the number of indigent people was 286.55 thousand people (8.19%) Based on these figures, it can be seen that the poverty rate in Jambi City, in general, is still high. Based on these conditions, it is necessary to do clusters to help the Jambi City Social Service in grouping indigent families so that assistance can be distributed appropriately.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Pada Kelurahan Kemuning belum ada metode yang digunakan seksi KESSOS untuk dapat mengelompokkan tingkat kemiskinan agar penerima bantuan tepat sasaran. Penelitian ini membuat penerapan metode K-Means untuk pengelompokan kemiskinan, dan dapat membantu pihak kelurahan untuk menghindari ketidak-tepatsasaran dalam penerima JAMKESDA [3] Penelitian Danang Sutejo pada tahun 2019 dengan judul "Sistem Informasi Geografis Pengelompokan Tingkat Kriminalitas Kota Malang Menggunakan Metode K-Means". Padatnya penduduk Kota Malang membuka peluang terjadinya tindakan kriminal.…”
Section: Tinjauan Pustaka 21 Penelitian Terdahuluunclassified
“…Nilai yang yang terbaik dari beberapa nilai tersebut adalah untuk K=2 karena nilai tersebut mendekati 0. [3].…”
Section: Pendahuluanunclassified