Penyakit alzheimer adalah penyakit yang menyerang sistem saraf di dalam otak. Penyakit ini dapat menyebabkan terganggunya aktivitas sehari-hari, ingatan yang tidak terorganisir, dan berkurangnya daya ingat. Deteksi dini penyakit alzheimer dapat memanfaatkan pendekatan matematis menggunakan data mining. Data mining memiliki model-model klasifikasi yang dapat digunakan untuk mendeteksi dini penyakit alzheimer. Beberapa algoritma yang dapat digunakan untuk klasifikasi diantaranya adalah C4.5 dan Adaptive Boosting (AdaBoost) yang diterapkan pada penelitian ini untuk mengklasifikasikan penyakit alzheimer. Perbandingan kedua algoritma ini bertujuan untuk memperoleh algoritma mana yang paling tepat dalam klasifikasi penyakit alzheimer. Untuk menguji kedua algoritma ini digunakan dua teknik pengujian yaitu percentage split dan k-fold cross validation. Pada percentage split dipilih ukuran split sebesar 80% untuk data latih dan 20% sebagai data uji dan k-fold cross validation dipilih nilai k sebesar 10. Hasil penerapan dari kedua algoritma diperoleh bahwa untuk k-fold cross validation bekerja lebih baik dibandingkan dengan percentage split. Hal ini dikarenakan k-fold cross validation meningkatkan persentase nilai presisi, recall, dan akurasi dari masing-masing algoritma. Untuk kinerja masing-masing algortima, AdaBoost dalam penggunaanya bekerja lebih baik dibandingkan dengan C4.5 dengan nilai presisi, recall dan akurasi secara berturut-turut, yaitu 91.5%, 91% dan 91.15%. Dari hasil yang diperoleh dapat disimpulkan bahwa algoritma AdaBoost dengan teknik k-fold cross validation memiliki performa yang paling baik dalam melakukan klasifikasi penyakit alzheimer dibandingkan algoritma dan teknik pengujian lainnya.