Considering the suitability of laboratory rats in epilepsy research, we and other groups
have been developing genetic models of epilepsy in this species. After epileptic rats or
seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits
were usually genetically-fixed by selective breeding. So far, the absence seizure models
GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic
seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER
have been established. Dissection of the genetic bases including causative genes in these
epileptic rat models would be a significant step toward understanding epileptogenesis.
N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to
develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with
an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model
rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type
1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant
stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea
(MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2
(EA2) model rats. Thus, epileptic rat models have been established on the two paths:
‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel
epileptic rat models will be extensively promoted by the use of sophisticated genome
editing technologies.