A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C 12 R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H ؉ ions was generated in the presence of C 12 R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C 12 R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C 12 R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C 12 R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.Transport of electrons along the mitochondrial respiratory chain is accompanied by the formation of an electrochemical gradient of hydrogen ions (⌬ H ϩ) 3 at the inner mitochondrial membrane. ⌬ H ϩ is used for ATP production and other energyconsuming processes. However, high values of ⌬ H ϩ can increase the production of dangerous reactive oxygen species (ROS) (1, 2). Although mitochondria are able to control ⌬ H ϩ by adjusting the activity of natural uncoupling mechanisms (i.e. free fatty acids, anion carriers, and uncoupling proteins) (3), there is considerable interest in finding pharmacological agents to increase mitochondrial proton leak and, as a consequence, to prevent obesity and to decrease ROS production (4 -7).Uncouplers, or protonophores, are small organic compounds capable of carrying hydrogen ions across artificial and biological membranes. The strategy of "mild uncoupling" (2) relies on the fact that partial decrease in ⌬ H ϩ can be beneficial for cells especially under some pathological conditions, suggesting that uncouplers are good candidates for therapeutic uses. Apparently, such applications are hindered by high toxicity, as in the case of 2,4-dinitrophenol (DNP), which was temporarily used at the beg...