We compare measurements made by two impact penetrometers of different sizes and with different tip shapes to further understand penetrometer design for performing pentrometry on an asteroid. To this end we re-visit the interpretation of data from the Huygens' penetrometer, ACC-E, that impacted Titan's surface. In addition we investigate the potential of a spacecraft fitted with a penetrometer to bounce using a test rig, built at The Open University (UK).Analysis of ACC-E laboratory data, obtained from impacts into ∼4 mm diameter gravel, was found to produce an unusual decrease in resistance with depth (force-depth gradient) which was also seen in the Huygens' ACC-E data from Titan and originally interpreted as a wet or moist sand. The downward trend could also be reproduced in a hybrid Discrete Element Model (DEM) if it was assumed that the near surface particles are more readily * Corresponding author mobilised than those deeper in the target. With regard to penetrometer design penetration resistance was found to be sensitive to the ratio of particle to tip diameter. A clear trend was observed with a conical tip penetrometer, X-PEN, of decreasing force-depth gradients with increasing particle sizes most likely due to a transformation from a bulk displacement of material by the penetrating tip to more local interactions. ACC-E, which has a hemispherical tip, was found to produce a wider range of force-depth gradients than X-PEN, which had a conical tip, possibly due to difficulties dislodging jammed particles. Both penetrometers were able to determine particle diameter and mass after post-processing of the data.Laboratory simulations of landings with the test rig suggest that a large impact penetrometer under certain circumstances could absorb a significant amount of the elastic energy of the spacecraft possibly aiding landing. Alternatively a small impact penetrometer would allow the spacecraft to bounce freely off the surface to make a measurement at another location.