2021
DOI: 10.29408/edumatic.v5i1.3125
|View full text |Cite
|
Sign up to set email alerts
|

Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb

Abstract: Traveling activities are increasingly being carried out by people in the world. Some tourist attractions are difficult to reach hotels because some tourist attractions are far from the city center, Airbnb is a platform that provides home or apartment-based rentals. In lodging offers, there are two types of hosts, namely non-super host and super host. The super-host badge is obtained if the innkeeper has a good reputation and meets the requirements. There are advantages to being a super host such as having more… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(10 citation statements)
references
References 12 publications
0
4
0
2
Order By: Relevance
“…Recall is a value that indicates the level of success or specificity in retrieving information correctly about negative class data or positive text content [15]. F1-Score is a comparison of precision and weighted average gain [16]. In this study, the F1-Score was 93.38%, which means that the designed model is considered good in classifying and predicting fish species and estimating the length of dead fish.…”
Section: Model Evaluationmentioning
confidence: 72%
See 1 more Smart Citation
“…Recall is a value that indicates the level of success or specificity in retrieving information correctly about negative class data or positive text content [15]. F1-Score is a comparison of precision and weighted average gain [16]. In this study, the F1-Score was 93.38%, which means that the designed model is considered good in classifying and predicting fish species and estimating the length of dead fish.…”
Section: Model Evaluationmentioning
confidence: 72%
“…The Confusion Matrix method is often used to measure performance on the grouping method. This method works by comparing the data that has been tested into four categories of embedded terms to describe the process results, namely False Positive (FP), False Negative (FN), True Positive (TP), and True Negative (TN) [10]. A confusion matrix can be used as a calculation of various performance metrics to measure the performance of a model that has been created.…”
Section: Model Evaluationmentioning
confidence: 99%
“…Proses evaluasi dengan menggunakan crossvalidation dan perhitungan manual confusion matrix melibatkan pengukuran akurasi, presisi, recall, dan F1-Score. [9] Akurasi mencerminkan sejauh mana model dapat mengklasifikasikan dengan tepat.…”
Section: Evaluasiunclassified
“…Metode oversampling pada kelas minority dapat membantu mencapai kinerja klasifikasi yang lebih baik. Pada penelitian yang dilakukan oleh Hidayat et al [9] melakukan perbandingan performa algoritma klasifikasi dari data yang tidak seimbang menggunakan metode SMOTE dan ADASYN. Penerapan metode SMOTE dan ADASYN pada data yang tidak seimbang sangat mempengaruhi performa algoritma SVM, terjadi kenaikan kenaikan pada label True (minoritas) pada pengujian pada F1-Score dari 0.597 menjadi 0.815 begitu juga pada presisi dan recall.…”
Section: Pendahuluanunclassified