Purpose. Development of a two-dimensional field mathematical model of a magnetic gearbox operating as part of a low-power wind turbine for the purpose of evaluating its parameters and characteristics and optimizing geometric parameters from the point of view of electromagnetic torque pulsations. Methodology. To carry out the research, the methods of the general theory of electromechanical energy converters, numerical methods of mathematical modeling based on the finite element method, numerical solution of nonlinear differential equations, and methods of spectral analysis to estimate pulsations of the electromagnetic torque were used in the work. Findings. The paper developed a two-dimensional numerical field mathematical model of a magnetic gearbox for an autonomous wind turbine. The model was developed to evaluate the parameters and characteristics of the magnetic gear, as well as to evaluate the influence of the design parameters on the magnitude of the electromagnetic torque and the magnitude of the pulsations of the electromagnetic torque. The effect of the configuration of permanent magnets, the parameters of the ferromagnetic inserts of the magnetic flux modulator and the size of the air gap was investigated in the paper. The obtained results show that there is an optimal configuration of permanent magnets and ferromagnetic elements of the magnetic flux modulator in which the maximum electromagnetic torque and minimum pulsations are achieved. Changing the parameters of the magnetic system affects the dynamics of the magnetic gear, its reliability and efficiency, therefore configuration optimization is an important task in the design, development and implementation of such systems. Originality. A two-dimensional field mathematical model of the magnetic gear has been developed, which makes it possible to estimate the change in its parameters and characteristics when the geometric dimensions change. This allows investigating the influence of various parameters of the magnetic system, such as the height of the permanent magnets and the width of the ferromagnetic inserts, on the electromagnetic torque. This makes it possible to obtain the optimal configuration of the system to achieve the optimal value of the torque and minimal pulsations and to determine the regularity of the change of the electromagnetic torque and other parameters of the gearbox under different operating modes in the future. Practical value. The simulation results indicate the prospects of industrial implementation of magnetic gaers as part of a wind power plant, and the obtained research results indicate the possibility of optimizing the design of magnetic gears in order to increase their reliability and efficiency.