2021
DOI: 10.30865/mib.v5i1.2634
|View full text |Cite
|
Sign up to set email alerts
|

Peningkatan Akurasi Klasifikasi Backpropagation Menggunakan Artificial Bee Colony dan K-NN Pada Penyakit Jantung

Abstract: Heart disease has ranked as the leading cause of death in the world, accounting for around 17.3 million deaths per year with some causes, as high blood pressure, diabetes, cholesterol fluctuation, fatigue, and some others which is collected on dataset. Heart disease dataset that was applied is cleveland heart disease with fourteen (14) data atribute. The method that was applied in this research was using Backpropagation algorithm on heart disease classifying, where will be combined Artificial Bee Colony and k-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
4

Year Published

2022
2022
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 22 publications
0
4
0
4
Order By: Relevance
“…The C4.5 algorithm, also known as the decision tree, is a classifiable algorithm with fast processing speed that can handle numerical and discrete data as well as identify and remove already missing attributes and generate easy-to-implement rules [21]. The C4.5 algorithm uses an attribute as root, creating a branch for each value in the case, and the process will continue to be repeated until each branch case has the same class [22].…”
Section: C45 (Decision Tree)mentioning
confidence: 99%
“…The C4.5 algorithm, also known as the decision tree, is a classifiable algorithm with fast processing speed that can handle numerical and discrete data as well as identify and remove already missing attributes and generate easy-to-implement rules [21]. The C4.5 algorithm uses an attribute as root, creating a branch for each value in the case, and the process will continue to be repeated until each branch case has the same class [22].…”
Section: C45 (Decision Tree)mentioning
confidence: 99%
“…Klasifikasi penyakit jantung telah banyak diteliti dengan berbagai metode yang ada pada data mining seperti penelitian yang dilakukan oleh [1], [2], [8]- [15], [16]. Penelitian yang dilakukan oleh Riski Annisa dalam penelitiannya mendapatkan hasil dimana algoritma random forest (RF) dan decision menunjukkan kinerja terbaik dalam klasifikasi pada dataset yang digunakan.…”
Section: Pendahuluanunclassified
“…Hasil penelitian terdahulu menggunakan algoritma K-Nearest Neighbor pada penelitian sinyal eeg terlihat algoritma ini mampu melakukan penelitian tehadap respondensi yang diminta untuk meminum air antioksidan untuk melihat gelombang alpa dan gelombang beta yang dihasilkan beberapa perbedaan sebesar 2,8% dan tingkat akurasi pada penilaian menggunakan algoritma ini sebesar 83% [9]. Pada penelitian terdahulu menjelaskan penggunaan algoritma K-Nearest Neighbor membantu meningkatkan akurasi dengan penggunaan algoritma [10] lainnya jauh lebih tinggi yaitu Algoritma Backpropagation tanpa kombinasi mencapai akurasi optimal 88% sedangkan algoritma "Backpropagation yang dikombinasi dengan ABC-kNN untuk seleksi fitur berhasil mencapai akurasi yang lebih baik yaitu sebesar 94%".…”
Section: Pendahuluanunclassified