Effects of fatty acid composition of frying oils on intensities of fried-food flavor and off-flavors in potato chips and french-fried potatoes were determined. Commercially processed cottonseed oil (CSO) and high-oleic sunflower oil (HOSUN) were blended to produce oils with 12 to 55% linoleic acid and 16 to 78% oleic acid. Analytical sensory panels evaluated french-fried potatoes and pilot plant-processed potato chips. Initially, both foods prepared in CSO (16% oleic/55% linoleic acid) had the highest intensities of fried-food flavor; however, this positive flavor decreased with decreasing levels of linoleic acid. 2,4-Decadienal in potato chips also decreased with decreasing linoleic acid in the oils. Frying oil stability, measured by total polar compounds (TPC), and oxidative stability of potato chips, measured by volatile compounds, showed that HOSUN (78% oleic acid) produced the lowest levels of TPC and the lowest levels of hexanal and pentanal, indicating greater frying oil stability and oxidative stability of the food. However, fresh potato chips fried in HOSUN had the lowest intensities of fried-food flavor and lowest overall flavor quality. Fried-food flavor intensity was the best indicator of overall flavor quality in fresh potato chips. Volatile compounds, TPC, and oxidative stability index directly varied with increasing oleic acid, and were therefore not directly indicative of flavor quality. No oil analysis predicted flavor stability of aged potato chips. Compositions of 16 to 42% oleic acid and 37 to 55% linoleic acid produced fresh fried-food with moderate fried food flavor intensity, good overall flavor quality, and low to moderate TPC levels (chips only). However, in aged food or food fried in deteriorated oil, compositions of 42 to 63% oleic and 23 to 37% linoleic provided the best flavor stability. JAOCS 74, 347-356 (1997).