The great interest for naked plasmid DNA in gene therapy studies is reflected by the fact that it is currently used in 18% of all gene therapy trials. Therefore, validation of topology and functionality of DNA resulting from its long-term stability is an essential requirement for safe and effective gene transfer. To this aim, we analyzed the stability of good manufacturing practice-grade pCMVb reporter plasmid DNA by capillary gel electrophoresis, agarose gel electrophoresis, and atomic force microscopy. The plasmid DNA was produced for a clinical gene transfer study started in 2005 and was stored for meanwhile 7 years under continuously monitored conditions at -20°C. The stability of plasmid DNA was monitored by LacZ transgene expression functional assays performed in vitro and in vivo on the 7-year-old plasmid DNA samples compared with plasmid batches newly produced in similar experimental conditions and quality standards. The analyses revealed that during the overall storage time and conditions, the proportion of open circular and supercoiled or covalently closed circular forms is conserved without linearization or degradation of the plasmid. The in vitro transfection and the in vivo jetinjection of DNA showed unaltered functionality of the long-stored plasmid. In summary, the 7-year-old and the newly produced plasmid samples showed similar topology and expression performance. Therefore, our stable storage conditions are effective to preserve the integrity of the DNA to be used in clinical studies. This is an important prerequisite for the long-term performance of gene transfer materials used in trials of long duration as well as of the reference material used in standardization procedures and assays.