Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Biofilm-associated infections present a significant challenge in modern medicine, primarily due to their resilience and resistance to conventional treatments. These infections occur when bacteria form biofilms, protective layers formed by bacterial communities, which are notoriously resistant to traditional antibiotics on surfaces such as medical implants and biological surfaces, making eradication with standard antibiotics difficult. This resilience leads to persistent infections, imposing a substantial economic burden on healthcare systems. The urgency to find alternative treatments is critical as current methods are insufficient and costly. Innovative approaches, such as nanotechnology-based therapies, offer promising alternatives by targeting biofilms more effectively and reducing the need for invasive procedures. Nanocarriers hold significant promise in the fight against biofilm-associated infections. Nanocarriers can penetrate biofilms more effectively than conventional treatments, delivering higher concentrations of antibiotics or other antimicrobial agents precisely where they are needed. This targeted approach not only enhances the efficacy of treatments but also minimizes potential side effects. The development of nanocarrier-based therapies is crucial for overcoming the limitations of current treatments and ultimately improving patient outcomes and reducing the economic burden of biofilm-associated infections on healthcare systems. In this review, nanotechnology-based systems, their characteristics, limitations, and potential benefits are explored to address biofilms-related infections. Additionally, biofilm evaluation models and the tests necessary for the preclinical validation of these nanosystems to facilitate their clinical application are addressed.
Biofilm-associated infections present a significant challenge in modern medicine, primarily due to their resilience and resistance to conventional treatments. These infections occur when bacteria form biofilms, protective layers formed by bacterial communities, which are notoriously resistant to traditional antibiotics on surfaces such as medical implants and biological surfaces, making eradication with standard antibiotics difficult. This resilience leads to persistent infections, imposing a substantial economic burden on healthcare systems. The urgency to find alternative treatments is critical as current methods are insufficient and costly. Innovative approaches, such as nanotechnology-based therapies, offer promising alternatives by targeting biofilms more effectively and reducing the need for invasive procedures. Nanocarriers hold significant promise in the fight against biofilm-associated infections. Nanocarriers can penetrate biofilms more effectively than conventional treatments, delivering higher concentrations of antibiotics or other antimicrobial agents precisely where they are needed. This targeted approach not only enhances the efficacy of treatments but also minimizes potential side effects. The development of nanocarrier-based therapies is crucial for overcoming the limitations of current treatments and ultimately improving patient outcomes and reducing the economic burden of biofilm-associated infections on healthcare systems. In this review, nanotechnology-based systems, their characteristics, limitations, and potential benefits are explored to address biofilms-related infections. Additionally, biofilm evaluation models and the tests necessary for the preclinical validation of these nanosystems to facilitate their clinical application are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.