A 30 cm segment of the duodenum, jejunum, or ileum of normal human volunteers was perfused, on separate occasions, with test solutions containing either glycylglycine, free glycine, glycylleucine, or equimolar amounts of free glycine and free leucine. Luminal fluid contained no hydrolytic activity against glycylglycine and minimal activity against glycylleucine. In each intestinal segment, amino acid absorption rates were significantly greater from the test solutions containing the same amount of amino acids in dipeptide than in free form (as high as 185% increase). Perfusion of each intestinal segment with a test solution containing the equimolar mixture of free glycine and free leucine always resulted in a greater leucine than glycine absorption rate. This preferential absorption of leucine, however, was either diminished (jejunum) or almost abolished (duodenum and ileum) when the glycylleucine solution instead of the equimolar mixture was presented to the intestinal mucosa. Among the three segments, the duodenum exhibited the least potential for the disappearance of dipeptides. The jejunal and ileal dipeptide disappearance rates were either similar for glycylleucine (94% vs. 92%) or slightly different for glycylglycine (92% vs. 79%). Despite lack of a remarkable difference in the disappearance rates, absorption rates of constituent amino acids were markedly greater in the jejunum than in the ileum. This reduced amino acid absorption was brought about by a greater accumulation of free amino acids in the lumen of the ileal segment in the lumen than when the glycylglycine test solution did not contain free leucine. Similarly, inhibition of free glycine and free leucine absorption by isoleucine was not accompanied by any remarkable alteration of absorption rates of the constituent amino acids of glycylleucine. The results of these studies suggest that: (a) dipeptide disappearance in the gut lumen is principally accomplished by intact absorption and not by hydrolysis; (b) intracellular hydrolysis of dipeptides is markedly greater in the ileum than in the jejunum, while dipeptide absorption rates are either similar or only slightly different in these two segments; (c) there is no appreciable hydrolysis of glycylglycine by the membrane-bound enzymes and only a small fraction of glycylleucine is hydrolyzed by these enzymes.