Transcription factors (TFs) are proteins that control the transcription of genetic information from DNA to mRNA by binding to specific DNA sequences either on their own or with other proteins as a complex. TFs thus support or suppress the recruitment of the corresponding RNA polymerase. In general, TFs are classified by structure or function. The TF, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), is expressed in all cell types and tissues. NF-κB signaling and crosstalk are involved in several steps of carcinogenesis including in sequences involving pathogenic stimulus, chronic inflammation, fibrosis, establishment of its remodeling to the precancerous niche (PCN) and transition of a normal cell to a cancer cell. Triggered by various inflammatory cytokines, NF-κB is activated along with other TFs with subsequent stimulation of cell proliferation and inhibition of apoptosis. The involvement of NF-κB in carcinogenesis provides an opportunity to develop anti-NF-κB therapies. The complexity of these interactions requires that we elucidate those aspects of NF-κB interactions that play a role in carcinogenesis, the sequence of events leading to cancer.