2023
DOI: 10.57152/malcom.v3i2.897
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM

Salsabila Rabbani,
Dea Safitri,
Nadila Rahmadhani
et al.

Abstract: Kebijakan perubahan harga Bahan Bakar Minyak (BBM) oleh pemerintah pada September 2022 lalu menimbulkan kontroversi pengguna sosial media termasuk Twitter. Untuk memahami bagaimana perubahan kenaikan harga BBM apakah mempengaruhi persepsi dan emosi masyarakat di Twitter maka dalam penelitian ini dilakukan analisis sentimen menggunakan algoritma Support Vector Machine (SVM) dengan tiga jenis kernel berbeda, yaitu linier, RBF (Radial Basis Function), dan polinomial. Penelitian ini bertujuan untuk mengklasifikasi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 19 publications
0
1
0
1
Order By: Relevance
“…Partitioning a dataset using split data is one of the many factors that affect the performance of classification models in machine learning algorithms [33]. The process of separating test data and training data is known as split data [34]. Training and testing data can be separated using k-fold cross-validation and holdout validation techniques.…”
Section: Split Datamentioning
confidence: 99%
“…Partitioning a dataset using split data is one of the many factors that affect the performance of classification models in machine learning algorithms [33]. The process of separating test data and training data is known as split data [34]. Training and testing data can be separated using k-fold cross-validation and holdout validation techniques.…”
Section: Split Datamentioning
confidence: 99%
“…Banyak penelitian terdahulu yang berkaitan dengan sentimen analisis menggunakan metode dari Support Vector Machine [28], [29]. Penelitian terdahulu dilakukan oleh Siti Sumayah menggunakan Support Vector Machine dengan hasil akurasi 81% dari 2504 data [6].…”
unclassified