2019
DOI: 10.30998/faktorexacta.v12i2.4181
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi Whatsapp

Abstract: WhatsApp is the most popular messaging application in Indonesia. This causes the emergence of cyberbullying behavior by its users. This study aims to classify WhatsApp chat to two classes, namely bully and not bully. The classification algorithms used are k-NN, NBC and SVM. The results show that the SVM algorithm is better at solving this case with an accuracy of 81.58%.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 1 publication
0
5
0
1
Order By: Relevance
“…-K-Nearest Neighbors dan Support Vector Machines (SVM): SVM adalah algoritma yang mencoba mencari hyperplane yang memisahkan dua kelas secara optimal. SVM dapat lebih baik dalam kasus dengan dataset yang tidak terlalu besar, sedangkan KNN dapat lebih sesuai untuk klasifikasi instance individu tanpa proses pelatihan yang rumit [16]. Adapun langka-langka dari algoritma K-Nearest Neighbor sebagai berikut [6]:…”
Section: Metode Yang Digunakan a Klassen Typologyunclassified
“…-K-Nearest Neighbors dan Support Vector Machines (SVM): SVM adalah algoritma yang mencoba mencari hyperplane yang memisahkan dua kelas secara optimal. SVM dapat lebih baik dalam kasus dengan dataset yang tidak terlalu besar, sedangkan KNN dapat lebih sesuai untuk klasifikasi instance individu tanpa proses pelatihan yang rumit [16]. Adapun langka-langka dari algoritma K-Nearest Neighbor sebagai berikut [6]:…”
Section: Metode Yang Digunakan a Klassen Typologyunclassified
“…The level of suitability of the information provided by the system and the information required by the user is also called precision, while the success rate of the system in finding information is recall [17]. Equation 2 and equation 3 are used to calculate precision and recall.…”
Section: F Classification Model Evaluationmentioning
confidence: 99%
“…The accuracy value is a calculation process to determine how accurate the correct prediction results are from the total data. The accuracy value can be calculated using equation (9). (9) The precision value is a calculation process to determine the ratio of t he prediction of a true positive class to the number of data that is predicted to be positive.…”
Section: Confusion Matrixmentioning
confidence: 99%
“…Research related to the comparison of the Support Vector Machine, K -Nearest Neighbor, and Naïve Bayes classification methods on the level of bully behavior on the Whatsapp application shows the Support Vector Machine method gets the best accuracy value of 81.58% [9].…”
Section: Introductionmentioning
confidence: 99%