2019
DOI: 10.25077/jnte.v8n2.620.2019
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Kinerja Support Vector Machine (SVM) Dalam Mengenali Wajah Menggunakan SURF DAN GLCM

Abstract: Pengenalan wajah merupakan salah satu bagian dari penelitian biometrika. Pengenalan wajah banyak digunakan dalam proses identifikasi manusia. Metode ekstraksi fitur Speed-Up Robust Feature (SURF) merupakan salah satu metode yang digunakan untuk mengenali wajah. Penelitian ini bertujuan untuk membandingkan kinerja sistem pengenalan wajah dengan menggunakan metode ekstraksi fitur SURF dan Gray Level Co-occurence Matrix (GLCM). Pada penelitian ini, data input wajah akan diekstraksi fiturnya menggunakan SURF dan G… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 8 publications
0
1
0
Order By: Relevance
“…Feature extraction is the stage of data analysis used to determine the characteristics of arrhythmia diseases. The data extraction method utilized in this study is morphology-based feature extraction as in Bahri, et al [22]. Last but not least, the final stage of the method is denoising.…”
Section: Deep Learning Autoencoder Process Flowmentioning
confidence: 99%
“…Feature extraction is the stage of data analysis used to determine the characteristics of arrhythmia diseases. The data extraction method utilized in this study is morphology-based feature extraction as in Bahri, et al [22]. Last but not least, the final stage of the method is denoising.…”
Section: Deep Learning Autoencoder Process Flowmentioning
confidence: 99%