2019
DOI: 10.25077/jmu.4.2.100-107.2015
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Metode Maximum Likelihood Dan Metode Bayes Dalam Mengestimasi Parameter Model Regresi Linier Berganda Untuk Data Berdistribusi Normal

Abstract: Analisis regresi merupakan salah satu metode untuk melihat hubungan antara variabel bebas (independent) dengan variabel terikat (dependent) yang dinyatakan dalam model regresi. Beberapa metode yang bisa digunakan untuk mengestimasi parameter model regresi, diantaranya adalah metode klasik dan metode Bayes. Salah satu metode klasik adalah metode maximum likelihood. Penelitian ini membahas tentang perbandingan metode maximum likelihood dan metode Bayes dalam mengestimasi parameter model regresi linear berganda u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…Is an analysis using a regression equation that describes the relationship between more than one independent variable (𝑋 ! , 𝑋 " , 𝑋 # … 𝑋 $ ) and one dependent variable [2]. In multiple regression, all independent variables are included in the simultaneous regression calculation.…”
Section: Regression Multiple Liniermentioning
confidence: 99%
“…Is an analysis using a regression equation that describes the relationship between more than one independent variable (𝑋 ! , 𝑋 " , 𝑋 # … 𝑋 $ ) and one dependent variable [2]. In multiple regression, all independent variables are included in the simultaneous regression calculation.…”
Section: Regression Multiple Liniermentioning
confidence: 99%