2018
DOI: 10.20956/jmsk.v15i1.4427
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Penduga M, S, dan MM pada Regresi Linier dalam Menangani Keberadaan Outlier

Abstract: Metode Kuadrat Terkecil (MKT) merupakan metode penduga parameter yang paling banyak digunakan pada analisis regresi. MKT merupakan metode penduga parameter tak bias yang baik selama asumsi komponen galatnya terpenuhi. Namun dalam aplikasinya sering ditemui terjadinya pelanggaran asumsi. Diantaranya, pelanggaran asumsi galat berdistribusi normal disebabkan adanya outlier pada data amatan. Oleh karena itu, dibutuhkan suatu metode yang kekar terhadap keberadaan outlier. Metode pendugaan parameter yang kekar terha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(8 citation statements)
references
References 2 publications
0
7
0
1
Order By: Relevance
“…The classical assumption tests carried out in this study included the normality error test (ɛ), multicollinearity test, autocorrelation test, and heteroscedasticity test. A total of 9 observation objects were considered outliers and were discarded in order to pass the classical assumption test, leaving 87 objects to be analyzed in the data processing (Lainun, Tinungki, & Amran, 2018;Tinungki, 2019).…”
Section: Methodsmentioning
confidence: 99%
“…The classical assumption tests carried out in this study included the normality error test (ɛ), multicollinearity test, autocorrelation test, and heteroscedasticity test. A total of 9 observation objects were considered outliers and were discarded in order to pass the classical assumption test, leaving 87 objects to be analyzed in the data processing (Lainun, Tinungki, & Amran, 2018;Tinungki, 2019).…”
Section: Methodsmentioning
confidence: 99%
“…In this research, weighting Tukey's Bisquare was chosen because weighting Tukey's Bisquare using a tunning constant (c) of up to 4.568 could achieve 95% efficiency. As the explanation of previous research, the use of c = 4.568 will make for 95% efficiency (Lainun and Tinungki, 2018).…”
Section: Discussion the Analysis Of M Estimationmentioning
confidence: 89%
“…The data outlier will make the analysis of OLS regression become refracted on the interpretation results and inefficient (Herawati, Nisa, and Setiawan, 2011). This is because the smallest quadrate is sensitive to the outlier (Lainun and Tinungki, 2018).…”
Section: Discussion the Analysis Of M Estimationmentioning
confidence: 99%
See 2 more Smart Citations