OBJECTIVE. For full-field digital mammography (FFDM), federal regulations prohibit lossy data compression for primary reading and archiving, unlike all other medical images, where reading physicians can apply their professional judgment in implementing lossy compression. Faster image transfer, lower costs, and greater access to expert mammographers would result from development of a safe standard for primary interpretation and archive of lossy-compressed FFDM images. This investigation explores whether JPEG 2000 80:1 lossy data compression affects clinical accuracy in digital mammography. MATERIALS AND METHODS. Randomized FFDM cases (n = 194) were interpreted by six experienced mammographers with and without JPEG 2000 80:1 lossy compression applied. A cancer-enriched population was used, with just less than half of the cases (42%) containing subtle (< 1 cm) biopsy-proven cancerous lesions, and the remaining cases were negative as proven by 2-year follow-up. Data were analyzed using the jackknife alternative free-response ROC (JAFROC) method. RESULTS. The differences in reader performance between lossy-compressed and non-lossy-compressed images using lesion localization (0.660 vs 0.671), true-positive fraction (0.879 vs 0.879), and false-positive fraction (0.283 vs 0.271) were not statistically significant. There was no difference in the JAFROC figure of merit between lossy-compressed and non-lossy-compressed images, with a mean difference of -0.01 (95% CI, -0.03 to 0.01; F1,5 = 2.30; p = 0.189). CONCLUSION. These results suggest that primary interpretation of JPEG 2000 80:1 lossy-compressed FFDM images may be viable without degradation of clinical quality. Benefits would include lower storage costs, faster telemammography, and enhanced access to expert mammographers.