Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is used to track the first pass of an exogenous, paramagnetic, nondiffusible contrast agent through brain tissue, and has emerged as a powerful tool in the characterization of brain tumor hemodynamics. DSC-MRI parameters can be helpful in many aspects, including tumor grading, prediction of treatment response, likelihood of malignant transformation, discrimination between tumor recurrence and radiation necrosis, and differentiation between true early progression and pseudoprogression. This review aims to provide a conceptual overview of the underlying principles of DSC-MRI of the brain for clinical neuroradiologists, scientists, or students wishing to improve their understanding of the technical aspects, pitfalls, and controversies of DSC perfusion MRI of the brain. Future consensus on image acquisition parameters and postprocessing of DSC-MRI will most likely allow this technique to be evaluated and used in high-quality multicenter studies and ultimately help guide clinical care.