2017
DOI: 10.1016/j.cag.2017.09.008
|View full text |Cite
|
Sign up to set email alerts
|

Perception of noise and global illumination: Toward an automatic stopping criterion based on SVM

Abstract: Unbiased global illumination methods based on stochastical techniques provide photorealistic images. However, they are prone to noise that can only be reduced by increasing the number of processed samples. The problem of finding the number of samples that are required in order to ensure that most observers cannot perceive any noise is still an open issue. In this article, we address this problem focusing on visual perception of noise. However, rather than using known perceptual models, we investigate the use o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0
3

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
2
1

Relationship

3
4

Authors

Journals

citations
Cited by 9 publications
(18 citation statements)
references
References 40 publications
0
15
0
3
Order By: Relevance
“…The difference between the original image and the noise-free image, so-called “noise mask” is used directly as the input to the model, i.e., a vector of size . Another approach proposed in [ 42 ], consists in adding samples to the input image using path tracing algorithm in order to obtain an image considered as a reference. For each of the two images (input image and approximate reference) a blurred image is computed using a Gaussian convolution with a convolution coefficient .…”
Section: Previous Workmentioning
confidence: 99%
See 1 more Smart Citation
“…The difference between the original image and the noise-free image, so-called “noise mask” is used directly as the input to the model, i.e., a vector of size . Another approach proposed in [ 42 ], consists in adding samples to the input image using path tracing algorithm in order to obtain an image considered as a reference. For each of the two images (input image and approximate reference) a blurred image is computed using a Gaussian convolution with a convolution coefficient .…”
Section: Previous Workmentioning
confidence: 99%
“…It is thus very different of well-known noise models and using available natural image databases is not possible. Then data that were used in [ 41 , 42 ] are still limited both in terms of image size and scene complexity.…”
Section: Subjective Dataset Collectionmentioning
confidence: 99%
“…В работах [53] была представлена модель, анализирующая шум в изоб-ражениях, полученных методами Монте-Карло на основе визуального воспри-ятия человека при помощи машинного обучения. Данная модель использова-лась для выработки критерия остановки расчёта.…”
Section: 3unclassified
“…Поэтому задача точного отделения сигнала от шу-ма в Монте-Карло-рендеринге в общем случае -трудная. Недостатком работ [53,54] является то, что анализировались сцены только с ламбертовскими ма-териалами и простым освещением. Это сильно отличается от сцен с трудновы-числимыми феноменами освещённости, поэтому в данной работе аналогичный подход не был использован.…”
Section: 3unclassified
See 1 more Smart Citation