2014
DOI: 10.1186/1687-6180-2014-27
|View full text |Cite
|
Sign up to set email alerts
|

Perceptually controlled doping for audio source separation

Abstract: The separation of an underdetermined audio mixture can be performed through sparse component analysis (SCA) that relies however on the strong hypothesis that source signals are sparse in some domain. To overcome this difficulty in the case where the original sources are available before the mixing process, the informed source separation (ISS) embeds in the mixture a watermark, which information can help a further separation. Though powerful, this technique is generally specific to a particular mixing setup and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
5

Year Published

2017
2017
2020
2020

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(11 citation statements)
references
References 32 publications
0
6
0
5
Order By: Relevance
“…The convergence speed of the algorithm is related to the condition number of the autocorrelation matrix of the driving signal, which depends, among others, on the signal distribution [2]. While we enhanced this condition number through the whiteness and stationarity of the driving watermark, it could also be enhanced in the first stage AEC by forcing the distribution of the input (doping watermarking, see [12], [22]- [24]) and in the second stage by choosing a watermark with an optimal distribution.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…The convergence speed of the algorithm is related to the condition number of the autocorrelation matrix of the driving signal, which depends, among others, on the signal distribution [2]. While we enhanced this condition number through the whiteness and stationarity of the driving watermark, it could also be enhanced in the first stage AEC by forcing the distribution of the input (doping watermarking, see [12], [22]- [24]) and in the second stage by choosing a watermark with an optimal distribution.…”
Section: Discussionmentioning
confidence: 99%
“…It is well known that the lower the condition number of the autocorrelation matrix of the AEC input, the faster the AEC convergence [1]. As w n is obviously less correlated than x w n , the convergence speed described by (12) is expected to be significantly higher [28].…”
Section: A A-wdaec: Performance Analysismentioning
confidence: 99%
See 1 more Smart Citation
“…3) Perceptual Doping Watermarking: A fim de se conseguir um compromisso entre desempenho na separação e degradação da qualidade perceptiva dos sinais de áudio no processo de dopagem, esta nova proposta de Mahé [4] apresenta um método no qual a qualidade sonora é avaliada por meio da Distorção Espectral de Bark (Bark Spectral Distortion -BSD), controlando assim o nível de modificação realizada nos sinais sobre o método anterior de Doping Watermarking.…”
Section: A Métodos De Esparsificaçãounclassified
“…Mesmo que os sinais não admitam, originalmente, uma representação esparsa, em algumas aplicações é possível ter acesso aos sinais das fontes antes do processo de mistura. Neste tipo de situação é possível manipular os sinais das fontes -e.g., em gravações de áudio em estúdio, nas quais os sinais das fontes são gravados separadamente e posteriormente misturados artificialmente -, tornando-os mais esparsos, uma abordagem usualmente associada à ideia de Separação Informada de Fontes (Informed Source Separation -ISS) [4].…”
Section: Introductionunclassified