Nanoparticles (NPs) of different types, especially those of metals and metal oxides, are widely used in research and industry for a variety of applications utilising their unique physical and chemical properties. In this article, the focus is put on the fabrication of nanomaterials by means of gas-phase aggregation, also known as the cluster beam technique. A short overview of the history of cluster sources development emphasising the main milestones is presented followed by the description of different regimes of cluster-surface interaction, namely, soft-landing, pinning, sputtering and implantation. The key phenomena and effects for every regime are discussed. The review is continued by the sections describing applications of nanomaterials produced by gas aggregation. These parts critically analyse the pros and cons of the cluster beam approach for catalysis, formation of ferromagnetic and superparamagnetic NPs, applications in sensor and detection technologies as well as the synthesis of coatings and composite films containing NPs in research and industrial applications covering a number of different areas, such as electronics, tribology, biology and medicine. At the end, the current state of the knowledge on the synthesis of nanomaterials using gas aggregation is summarised and the strategies towards industrial applications are outlined.