Image‐guided tumor ablative therapies are mainstay cancer treatment options, but often require intra‐procedural protective tissue displacement to reduce the risk of collateral damage to neighboring organs. Standard of care (SoC) strategies, such as hydrodissection (fluidic injection), are limited by rapid diffusion of fluid and poor retention time, risking injury to adjacent organs, increased cancer recurrence rates from incomplete tumor ablations, and limited patient qualification. Herein, we developed “gel‐dissection,” a technique leveraging injectable hydrogels for longer‐lasting, shapeable, and transient tissue separation, empowering clinicians with improved ablation operation windows and greater control. A rheological model was designed to understand and tune gel‐dissection parameters. In swine models, gel‐dissection achieved 24 times longer‐lasting tissue separation dynamics compared to saline, with 40% less injected volume. Gel‐dissection achieved anti‐dependent dissection between free‐floating organs in the peritoneal cavity and clinically significant thermal protection, with the potential to expand minimally invasive therapeutic techniques, especially across locoregional therapies including radiation, cryoablation, endoscopy, and surgery.This article is protected by copyright. All rights reserved