“…In the case of prime period N = 4a 2 + 27 = 6 f + 1 = 2 m − 1, where a, f and m are positive integers, e.g., N = 31 and N = 127, there exist six different sequence patterns of degree-2 PGISs derived from the trace representation of Hall's sextic residue sequences [25]. (b, b, b, a, b, 0, a, a, b, 0, 0, 0, a, 0, a, 0, b, a, 0, a, 0, 0, 0, 0, a, a, 0, 0, a, 0, 0) s 11 is ternary sequence, t 2 (b, 0, 0, a, 0, a, a, 0, 0, a, a, b, a, b, 0, 0, 0, a, a, 0, a, b, b, 0, a, 0, b, 0, 0, 0, 0) t 1 to t 12 are CIDTS t 3 (b, 0, 0, b, 0, a, b, 0, 0, a, a, a, b, a, 0, 0, 0, b, a, 0, a, a, a, 0, b, 0, a, 0, 0, 0, 0) constructed based on m-sequences t 4 (b, a, a, 0, a, 0, 0, 0, a, 0, 0, a, 0, a, 0, b, a, 0, 0, 0, 0, a, a, b, 0, 0, a, b, 0, b, b) t 5 (b, 0, 0, 0, 0, b, 0, a, 0, b, b, a, 0, a, a, 0, 0, 0, b, a, b, a, a, 0, 0, a, a, 0, a, 0, 0) t 6 (b, 0, 0, a, 0, 0, a, a, 0, 0, 0, 0, a, 0, a, b, 0, a, 0, a, 0, 0, 0, b, a, a, 0, b, a, b, b) t 7 (b, b, b, 0, b, a, 0, 0, b, a, a, 0, 0, 0, 0, a, b, 0, a, 0, a, 0, 0, a, 0, 0, 0, a, 0, a, a) t 8 (b, 0, 0, 0, 0, a, 0, b, 0, a, a, a, 0, a, b, 0, 0, 0, a, b, a, a, a, 0, 0, b, a, 0, b, 0, 0) t 9 (b, a, a, 0, a, b, 0, 0, a, b, b, 0, 0, 0, 0, a, a, 0, b, 0, b, 0, 0, a, 0, 0, 0, a, 0, a, a) t 10 (b, 0, 0, b, 0, 0, b, a, 0, 0, 0, 0, b, 0, a, a, 0, b, 0, a, 0, 0, 0, a, b, a, 0, a, a, a, a) t 11 (b, a, a, a, a, 0, a, b, a, 0, 0, 0, a, 0, b, 0, a, a, 0, b, 0, 0, 0, 0, a, b, 0, 0, b, 0, 0) t 12 (b, a, a, 0, a, 0, 0, 0, a, 0, 0, b, 0, b, 0, a, a, 0, 0, 0, 0, b, b, a, 0, 0, b, a, 0, a, a) s 10 , s 8 and s 9 are constructed using cyclotomic class of orders 1, 2, and 2, respectively, and s 7 is from (12) 4.4.3.…”