An efficient level set model based on multiscale local binary fitting (MLBF) is proposed for image segmentation. By introducing multiscale idea into the LBF model, the proposed MLBF model can effectively and efficiently segment images with intensity inhomogeneity. In addition, by adding a reaction diffusion term into the level set evolution (LSE) equation, the regularization of the level set function (LSF) can be achieved, thus completely eliminating the time-consuming reinitialization process. In the implementation phase, in order to greatly improve the efficiency of the numerical solution of the level set segmentation model, we introduce three strategies: The first is the additive operator splitting (AOS) solver which is used for breaking the restrictions on time step; the second is the salient target detection mechanism which is used to achieve full automatic initialization of the LSE process; the third is the sparse filed method (SFM) which is used to restrict the groups of pixels that need to be updated in a small strip region. Under the combined effect of these three strategies, the proposed model achieves very high execution efficiency in the following aspects: contour location accuracy, speed of evolution convergence, robustness against initial contour position, and robustness against noise interference.