Abstract-We consider the optimization of pre-and postfilters surrounding a quantization system. The goal is to optimize the filters such that the mean square error is minimized under the key constraint that the quantization noise variance is directly proportional to the variance of the quantization system input. Unlike some previous work, the postfilter is not restricted to be the inverse of the prefilter. With no order constraint on the filters, we present closed-form solutions for the optimum pre-and postfilters when the quantization system is a uniform quantizer. Using these optimum solutions, we obtain a coding gain expression for the system under study. The coding gain expression clearly indicates that, at high bit rates, there is no loss in generality in restricting the postfilter to be the inverse of the prefilter. We then repeat the same analysis with first-order preand postfilters in the form 1+z 01 and 1=(1+ z 01 ). In specific, we study two cases: 1) FIR prefilter, IIR postfilter and 2) IIR prefilter, FIR postfilter. For each case, we obtain a mean square error expression, optimize the coefficients and and provide some examples where we compare the coding gain performance with the case of = . In the last section, we assume that the quantization system is an orthonormal perfect reconstruction filter bank. To apply the optimum pre-and postfilters derived earlier, the output of the filter bank must be wide-sense stationary WSS which, in general, is not true. We provide two theorems, each under a different set of assumptions, that guarantee the wide sense stationarity of the filter bank output. We then propose a suboptimum procedure to increase the coding gain of the orthonormal filter bank.Index Terms-Half-whitening scheme, noise shaping, optimum pre-and postfiltering, subband coding.