The conventional approach of the mechanism design process, generally, has a two-step procedure: Kinematic synthesis/analysis of the mechanism in the first step and optimization of the synthesized/analyzed mechanism based on optimization criteria in the second step. This study presents an approach that combines kinematic synthesis with the static balancing of the same, and optimization, into a one-step procedure. As an example of this one-step design process, a tension-spring assisted fourbar hood linkage optimal synthesis and design is performed in one-step. This one-step solution includes kinematic synthesis and analysis of the hood linkage, virtual work, static balancing with tension spring, and optimization in the presence of joint friction. The resulting design requires a minimum force to raise and lower the hood in the presence of unknown optimum levels of joint friction while the hood is statically balanced for its entire range of motion. A total of twelve different scenarios are investigated and the results are discussed.