We study the effect of discrete symmetry breaking in inhomogeneous scattering media within the framework of generic wave propagation. Our focus is on one-dimensional scattering potentials exhibiting local symmetries. We find a class of spatially invariant nonlocal currents, emerging when the corresponding generalized potential exhibits symmetries in arbitrary spatial domains. These invariants characterize the wave propagation and provide a spatial mapping of the wave function between any symmetry related domains. This generalizes the Bloch and parity theorems for broken reflection and translational symmetries, respectively. Their nonvanishing values indicate the symmetry breaking, whereas a zero value denotes the restoration of the global symmetry where the well-known forms of the two theorems are recovered. These invariants allow for a systematic treatment of systems with any local symmetry combination, providing a tool for the investigation of