The alkene transfer hydrogenation (TH) of a variety of alkenes has been achieved with simple AeN′′2 catalysts [Ae=Ca, Sr, Ba; N′′=N(SiMe3)2] using 1,4‐cyclohexadiene (1,4‐CHD) as a H source. Reaction of 1,4‐CHD with AeN′′2 gave benzene, N′′H, and the metal hydride species N′′AeH (or aggregates thereof), which is a catalyst for alkene hydrogenation. BaN′′2 is by far the most active catalyst. Hydrogenation of activated C=C bonds (e.g. styrene) proceeded at room temperature without polymer formation. Unactivated (isolated) C=C bonds (e.g. 1‐hexene) needed a higher temperature (120 °C) but proceeded without double‐bond isomerization. The ligands fully control the course of the catalytic reaction, which can be: 1) alkene TH, 2) 1,4‐CHD dehydrogenation, or 3) alkene polymerization. DFT calculations support formation of a metal hydride species by deprotonation of 1,4‐CHD followed by H transfer. Convenient access to larger quantities of BaN′′2, its high activity and selectivity, and the many advantages of TH make this a simple but attractive procedure for alkene hydrogenation.